Mitochondrial permeability transition in liver ischemia and reperfusion: role of c-Jun N-terminal kinase 2.
نویسندگان
چکیده
The mitochondrial permeability transition (MPT) mediates hepatic necrosis after ischemia and reperfusion (I/R). Here, we studied the role of c-Jun N-terminal kinase 2 (JNK2) in MPT-induced liver injury. Wildtype (WT) and JNK2 knockout (KO) mice underwent 70% liver ischemia for 1 hr followed by reperfusion for 8 hr, after which hepatocyte injury and animal survival was assessed. Compared with WT, JNK2 KO mice had 38% less alanine transaminase release and 39% less necrosis by histology. Survival out to 14 days was also greater in JNK2 KO mice (57% vs. 11%), and overall Kaplan-Meier survival was improved. No difference in apoptosis was observed. Intravital multiphoton microscopy of potential-indicating rhodamine 123 after reperfusion revealed depolarized mitochondria in 82% of WT hepatocytes, which decreased to 43% in JNK2 KO hepatocytes. In conclusion, JNK2 contributes to hepatocellular injury and death after I/R in association with increased mitochondrial dysfunction via the MPT.
منابع مشابه
Evaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion
Objective (s) Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT) pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury. Mater...
متن کاملPreconditioning effects of oxytocin in reducing cardiac arrhythmias in a rat heart regional ischemia-reperfusion model
Abstract Introduction: Occurrence of cardiac arrhythmias and myocardial infarction are two main deleterious events that are caused by ischemia-reperfusion (IR) injury in the heart. Cardiac preconditioning represents the most potent method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) cardioprotective effect...
متن کاملInhibition of JNK Aggravates the Recovery of Rat Hearts after Global Ischemia: The Role of Mitochondrial JNK
c-Jun N-terminal kinase (JNK), a stress-activated MAPK, is activated during cardiac ischemia-reperfusion (IR). The role of JNK inhibitors in cardioprotection against IR still remains controversial, in part, due to spill-over effects of non-specific inhibitors. In the present study, we sought to examine whether inhibition of JNK by SU3327, a specific JNK inhibitor that inhibits upstream JNK sign...
متن کاملHydrogen Sulfide Preconditioning Protects Rat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting Mitochondrial Permeability Transition
Hydrogen sulfide (H2S) is the third most common endogenously produced gaseous signaling molecule, but its impact on hepatic ischemia/reperfusion (I/R) injury, especially on mitochondrial function, remains unclear. In this study, rats were randomized into Sham, I/R, ischemia preconditioning (IPC) or sodium hydrosulfide (NaHS, an H2S donor) preconditioning groups. To establish a model of segmenta...
متن کاملEffect of pre-treatment with oxytocin on cardiac enzymes in regional ischemiareperfusion injury induced in the rat heart
Introduction: Cardiac preconditioning represents the most potent and consistently reproducible method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) induced cardioprotection and its signaling pathways on lactate dehydrogenase (LDH) and creatine kinase-MB isoenzyme (CK-MB) in the anesthetized rats. Methods: Ei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Transplantation
دوره 85 10 شماره
صفحات -
تاریخ انتشار 2008